Safe Flight Using One Aerodynamic Control Surface
نویسندگان
چکیده
Civil unmanned aircraft will need to meet stringent safety standards before they are certified to operate in the national airspace of the United States. Reliability is a key requirement for certification. Most current civil unmanned aircraft are not reliable because of the presence of single points-of-failure and the use of low-reliability components. For example: Many fixed-wing unmanned aircraft are equipped with only two aerodynamic control surfaces. A fault in any one surface will usually spell catastrophe. This paper demonstrates how this single point-of-failure can be removed using multi-variable control laws. A single aerodynamic control surface is shown to be sufficient to stabilize the aircraft and execute a set of limited maneuvers. These limited maneuvers are sufficient to safely fly to a landing spot. This concept is proved using flight tests on an unmanned aircraft at the University of Minnesota. The results are also applicable to manned commercial aircraft. Controllability with one surface indicates the large potential to mitigate faults that might otherwise lead to loss-of-control events.
منابع مشابه
A Hierarchical Approach to Adaptive Control for Improved Flight Safety
Following failures of primary aerodynamic actuators, safe flight can be maintained by introducing alternative actuation systems, such as secondary aerodynamic surfaces and propulsion, for critical stability and control augmentation. This paper presents an intelligent hierarchical flight control system architecture that is designed using nonlinear adaptive synthesis techniques and on-line learni...
متن کاملAdaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles
Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...
متن کاملIntelligent Aerodynamic/Propulsion Flight Control For Flight Safety: A Nonlinear Adaptive Approach
This paper presents an intelligent fault tolerant flight control system that blends aerodynamic and propulsion actuation for safe flight operation in the presence of actuator failures. Fault tolerance is obtained by a nonlinear adaptive control strategy based on on-line learning neural networks and actuator reallocation scheme. The adaptive control block incorporates a recently developed techni...
متن کاملStress Analysis of Flight Vehicles under Flight Conditions
A method is presented for the stress analysis of flight vehicles under different flight conditions including gust and control surface deflection (or maneuver) using the governing equations of rigid-body motions and elastic deformations. The Lagrangian approach is used to derive the governing equations of motions. For this purpose, the basic equations of motions are derived in terms of potential...
متن کاملStress Analysis of Flight Vehicles under Flight Conditions
A method is presented for the stress analysis of flight vehicles under different flight conditions including gust and control surface deflection (or maneuver) using the governing equations of rigid-body motions and elastic deformations. The Lagrangian approach is used to derive the governing equations of motions. For this purpose, the basic equations of motions are derived in terms of potential...
متن کامل